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Abstract
We consider directed walk models of a homopolymer (in two dimensions)
interacting with two immiscible liquids. The polymer is subject to a force,
normal to the interface between the two liquid phases. We first consider the
case where, in the absence of a force, the polymer is delocalized into the
preferred bulk phase, but is pulled into the less favourable bulk phase by
the applied force. We examine the temperature dependence of the critical force
as a function of the relative quality of the two solvents. When both solvents
are poor the polymer can localize at the interface and we also consider the
temperature dependence of the critical force needed to pull the polymer out of
the interface and into a bulk phase.

PACS numbers: 05.50.+q, 82.35.−x, 87.15.Cc

1. Introduction

The availability of experimental methods for micromanipulation of polymer molecules has
led to an interest in developing theories of the unzipping of duplex DNA molecules by an
applied force (Marenduzzo et al 2001, 2002). The temperature dependence of the critical
force for unzipping shows interesting features and, in particular, the phase diagram in the
force–temperature plane can show re-entrant behaviour. The re-entrant behaviour has been
seen both in a self-avoiding walk model (Orlandini et al 2001) and in a directed walk model
(Marenduzzo et al 2001). Micromanipulation techniques can also be used to study the effect
of an applied force on the adsorption of linear polymers at a surface or on the localization of
polymers at an interface between two immiscible liquids (Chatellier et al 1998, Bemis et al
1999).

Polymer adsorption and localization in the absence of an applied force have been widely
studied for many different models of the configurational properties of the polymer. Directed
walk models of adsorption of homopolymers are rather well understood (Privman et al 1988,
Whittington 1998, Janse van Rensburg 2000, 2003) and give considerable insight into the
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physics of the problem. In a similar way directed walk models have contributed to our
understanding of the phenomenon of localization of a polymer at the interface between
two immiscible liquids (Bolthausen and den Hollander 1997, Biskup and den Hollander 1999,
Orlandini et al 2002).

In this paper we consider directed walk models of a homopolymer and a pair of immiscible
liquids with a planar interface. We restrict our attention to the case where the first monomer
of the polymer is in the interface between the two liquids. If the polymer is soluble in one
liquid and insoluble in the other it will be delocalized into one liquid phase. We then apply
a tensile force to the last monomer, in a direction perpendicular to the interface, so as to pull
the polymer from the preferred liquid phase to the other phase. We ask for the temperature
dependence of the critical value of the force needed to move the polymer from one phase to
the other. We also consider the situation in which the polymer sits at the interface (i.e. it is
localized) and apply a force to pull it into one of the liquid phases. Again we ask for the
temperature dependence of the critical value of the force.

2. A model related to Dyck paths

The model which we shall consider in this section is a directed walk model in two dimensions
related to bilateral Dyck paths. Consider walks on the vertex set of the square lattice (having
coordinate system (x1, x2)) with edges of length

√
2 in directions (1, 1) and (1,−1). A Dyck

path is a walk with edges of these two types, starting at the origin, having no vertex with
negative x2-coordinate and with the last vertex in the line x2 = 0. A bilateral Dyck path has
the same types of edges, starts at the origin and has its last vertex in x2 = 0. That is it can
cross the line x2 = 0. We shall be concerned with walks with the same types of edges, which
start at the origin and have their last vertex in the line x2 = h. The case h = 0 corresponds to
bilateral Dyck paths. A special case is a tail which is a walk which starts at the origin and has
no other vertices in x2 = 0.

Let wn(u, v, h) be the number of such walks with n edges, having u vertices with positive
x2-coordinate, v vertices with negative x2-coordinate and with the last vertex in the line x2 = h.
Define the generating functions

W(a, b, y, z) =
∑

u,v,h,n

wn(u, v, h)aubvyhzn (2.1)

and

W +(a, b, y, z) =
∑
u,v

∑
h�0

∑
n

wn(u, v, h)aubvyhzn. (2.2)

We shall call the positive half-space x2 > 0 the α-phase and the negative half-space x2 < 0
the β-phase.

We now show how W +(a, b, y, z) can be calculated in terms of the generating functions
of Dyck paths, bilateral Dyck paths and tails. Let dn be the number of Dyck paths with n
edges. By convention we set d0 = 1. Define the generating function

D(z) =
∑

n

dnz
n. (2.3)

Dyck paths can be factored according to the following scheme,

D(z)
D(z) D(z)+=
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so that D(z) satisfies the recurrence relation

D(z) = 1 + z2D(z)2 (2.4)

from which we obtain

D(z) = 1 − √
1 − 4z2

2z2
. (2.5)

Let the generating function for bilateral Dyck paths be B(a, b, z), with a conjugate to the
number of vertices in the positive half-plane, b conjugate to the number of vertices in the
negative half-plane and z conjugate to the number of edges. Every bilateral Dyck path is
either

1. a single vertex, which contributes unity to B(a, b, z), or
2. a Dyck path with all except its first and last vertices having x2 > 0, possibly followed

by a bilateral Dyck path, or
3. a Dyck path with all except its first and last vertices having x2 < 0, possibly followed

by a bilateral Dyck path.

Factoring every bilateral Dyck path (except the single vertex) at the first return to the line
x2 = 0 gives

B(a, b, z) = 1 + z2[aD(az) + bD(bz)]B(a, b, z) (2.6)

so that

B(a, b, z) = 1

1 − z2[aD(az) + bD(bz)]
. (2.7)

B has two square root singularities

z1 = 1

2a
z2 = 1

2b
(2.8)

and a third singularity corresponding to a zero of the denominator of B, i.e.

z3 =
√

(a + b − ab)(a − 1)(b − 1)

a + b − 2ab
. (2.9)

Note that z3 only occurs in the region of the (a, b)-plane where b < a/(2a − 1).
Let H(a, y, z) count walks starting at the origin, with no vertices having x2-coordinate

negative, where a is conjugate to the number of vertices in the positive half-plane, y is
conjugate to the x2-coordinate of the last vertex and z is conjugate to the number of edges.
Let T +(y, z) be the generating function of tails where y is conjugate to the x2-coordinate of
the last vertex, x2 > 0 so only positive powers of y appear, and z is conjugate to the number
of edges. These are related by

T +(y, z) = yzH(1, y, z). (2.10)

Walks contributing to H(1, y, z) are either Dyck paths or Dyck paths followed by a tail so we
have the relation

H(1, y, z) = D(z) + D(z)T +(y, z). (2.11)

Combining (2.10) and (2.11) gives

H(1, y, z) = D(z)

1 − yzD(z)
. (2.12)

Note that for each tail in the positive half-space, all except the first vertex has positive x2-
coordinate. Weighting such vertices with the factor a gives

T +(y, az) = ayzH(1, y, az). (2.13)
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Now we are ready to calculate W + by another factorization argument. Walks contributing
to W + are bilateral Dyck paths and bilateral Dyck paths followed by a tail in the positive
half-space. Therefore

W +(a, b, y, z) = B(a, b, z) + B(a, b, z)T +(y, az). (2.14)

The generating function W + has the same three singularities as those of B, i.e. z1, z2 and z3

given in (2.8) and (2.9) and, in addition, a fourth singularity

z4 = y

a(1 + y2)
(2.15)

which is associated with the tail contribution.
In the next two sections we explore how the singularity structure of W + can be used to

predict the phase diagram for a directed walk with an applied force, both in the delocalized
and in the localized regime.

3. The delocalized case

In this section we consider a polymer delocalized into the β-phase and we shall consider the
case b > a � 1. We argue that it is sufficient to consider W + instead of W . Suppose that the
walk is delocalized into β and the x2-coordinate of its last vertex is h < 0. For every finite
h < 0 the free energy will be identical to the case h = 0, so we can restrict our attention to
walks with h � 0, i.e. to walks counted in W +. There is no cost in free energy in pulling the
last vertex into the plane x2 = 0.

Since b > a, z2 < z1 which reflects the fact that in the absence of an applied force
the walk is delocalized into the β-phase. When the force is applied (y > 1) the competing
singularity is z4 and the phase boundary in the (a, b, y)-space is determined by the solution to
the equation z4 = z2, i.e. by

y = b +
√

b2 − a2

a
. (3.1)

To introduce temperature (T) and force (f ) explicitly we make the substitutions

y = ef/T (3.2)

and

a = e−ε1/T b = e−ε2/T . (3.3)

Since the ratio ε1/ε2 characterizes the relative solvent quality of α and β, without loss of
generality we can set ε2 = −1 and write ε1 = −ε. We note that b > a corresponds to ε < 1
and that increasing values of ε correspond to increasing the quality of the α-solvent. When
ε = 1 the α and β-solvents are both equally good. Making these substitutions in (3.1) gives
the temperature dependence of the critical force, fc(T , ε), as a function of the relative solvent
quality ε. The T-dependence of fc at various values of ε is shown in figure 1. Note that
fc(0, ε) = 1 − ε and that fc(T , ε) increases with T at fixed ε and decreases with ε at fixed T.
At any fixed ε < 1 and f = 0 the walk is delocalized in the β-phase and has positive entropy.
There is a loss of entropy when the walk is subjected to a force f > 0 and this entropy loss
plays a larger role at higher temperatures. Hence fc(T , ε) is an increasing function of T.
Smaller values of ε correspond to the solvent α being increasingly poor compared to solvent
β. Hence, as ε decreases, there is an increasingly important energetic disadvantage when the
polymer is moved into the α-phase.
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Figure 1. The temperature dependence of the critical force to pull a polymer from one bulk phase
to the other. The curves are for ε = 0.0, 0.2, 0.5 and 0.8. At fixed T the force decreases as ε

increases.

4. The localized case

When a, b < 1 the singularity z3 exists and, in the absence of a force, leads to a localized
phase (Orlandini et al 2002). One can think of the interfacial line as modelling a thin layer of
a third liquid (immiscible with the other two liquids) in which the homopolymer is soluble.
With a, b < 1 it is energetically favourable for the polymer to avoid the two bulk phases in
favour of this third interfacial phase. (Note that there is no energetic disadvantage when a
vertex is in the interfacial line x2 = 0.) The phase boundary between the localized phase
(controlled by z3) and the phase in which the polymer is delocalized into the α-phase is
given by

b = a(2a − 1)

1 − 2a + 2a2
. (4.1)

This phase boundary passes through the points (1, 1) and (1/2, 0). When the polymer is
being pulled into the α-phase the phase behaviour is controlled by the competition between
the singularities z3 and z4, so the phase boundary is the solution of the equation z3 = z4, i.e.

y = a + b − 2ab − a2 + a2b

a
√

(a + b − ab)(a − 1)(b − 1)
. (4.2)

In this case we make the substitutions

y = ef/T (4.3)

and

a = e−ε/T b = e−1/T (4.4)
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Figure 2. Temperature dependence of the critical force to pull a polymer from the interface to a
bulk phase when the bulk phases are both unfavourable. As the two phases become more similar
the force increases. The curves are for ε = 0.4, 0.5, 0.6, 0.7 and 0.8.

with 0 � ε < 1. Note the difference in the sign convention for ε used in this section and in the
previous section. Larger positive values of ε now correspond to worse solvents. In figure 2
we show the temperature dependence of the critical force at various values of ε. These curves
show several interesting features. For every T , fc(T , ε) is monotone increasing in ε. When
ε � 1/2fc(T , ε) is a monotone decreasing function of T. When ε > 1/2fc(T , ε) goes through
a maximum as T increases and the location of the maximum increases as ε increases. That is,
the phase diagram is reentrant for 1 > ε > 1/2. To investigate the low-temperature behaviour
in more detail we show an enlargement of the figure near T = 0 in figure 3. We note that
fc(0, ε) = ε/2 and all the curves have zero slope at T = 0. When ε = 1 the curve has positive
slope at T = 0 and the force is monotone increasing in T. We return to this point in section 6.

In the absence of a force the phase transition is second order, i.e. the fraction of vertices
in the interfacial line is a continuous but not differentiable function of the temperature. With
any non-zero force the phase transition is first order.

5. A model related to Motzkin paths

Dyck paths have the disadvantage that they cannot lie entirely in the interface between the
two bulk phases. We have therefore considered a somewhat more general model, related to
Motzkin paths. The argument follows the idea used for Dyck paths in section 2 and we give
only a sketch. A Motzkin path is a directed walk on the vertex set of the square lattice with
the following restrictions:

1. the walk can have three kinds of edges, two of length
√

2 in directions (1,±1) and one of
length 1 in direction (1, 0),
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Figure 3. An enlargement of figure 2 to show the behaviour close to T = 0.

2. the walk starts at the origin and ends in the line x2 = 0, and
3. the walk has no vertices with negative x2-coordinate.

Every Motzkin path begins with a set of edges (possibly empty) in x2 = 0. The Motzkin path
then leaves x2 = 0. At its first return the Motzkin path is either complete or is completed by
another Motzkin path. If M(z) is the generating function of Motzkin paths then the initial
edges in x2 = 0 contribute 1 + z + z2 + · · · = 1/(1 − z) to M(z). Then factoring the path at its
first return to x2 = 0 shows that M satisfies the relation

M(z) = 1

1 − z
[1 + z2M(z)2] (5.1)

so that

M(z) = 1 − z − √
1 − 2z − 3z2

2z2
. (5.2)

Let A(a, b, z) be the generating function for bilateral Motzkin paths (i.e. where condition (3),
above, is relaxed), where a and b are conjugate to the numbers of vertices with x2 > 0 and
x2 < 0, and z is conjugate to the number of edges. Since a bilateral Motzkin path is either a
(possibly empty) set of edges in x2 = 0, or a set of edges in x2 = 0 followed by a Motzkin path
either in the upper or in the lower half-space followed by a bilateral Motzkin path, another
factorization argument shows that A satisfies the relation

A(a, b, z) = 1

1 − z
(1 + z2[aM(az) + bM(bz)]A(a, b, z)) (5.3)

so that

A(a, b, z) = 2ab

2ab − a − b + a
√

1 − 2bz − 3b2z2 + b
√

1 − 2az − 3a2z2
. (5.4)
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The generating function A has three physically relevant singularities,

z1 = 1

3a
z2 = 1

3b
(5.5)

and a singularity z3 corresponding to a zero of the denominator of A. This third singularity
only exists when 2ab − a − b � 0, i.e. in the third quadrant of the (log a, log b) plane.

The remainder of the argument leading to an expression for W + is almost identical to that
given in section 2. For this model the generating function W + has four singularities, the three
singularities of A discussed above and a fourth singularity

z4 = y

a(1 + y + y2)
(5.6)

which is associated with the tail contribution. Proceeding as in sections 3 and 4 we can derive
the force–temperature diagrams corresponding to figures 1 and 2. The behaviour is very
similar to the Dyck path case, although of course there are quantitative differences. For the
localized case the phase diagram is again reentrant for ε > 1/2 and the critical force has zero
slope at T = 0 as in figures 2 and 3. However, when ε = 1 the force is monotone increasing
in T but still has zero slope at T = 0. As discussed in section 6, this is related to the unique
ground state for this model.

6. Discussion

We have analysed directed walk models of the behaviour of a homopolymer in a system with
two immiscible liquids when it is subject to a force. We considered two cases, where the
polymer is delocalized into one phase and then pulled into the other, and where the polymer is
localized at the interface and then pulled into one of the bulk phases. The force–temperature
phase diagrams are very different in the two cases and, in the second, depend crucially on the
relative quality of the two solvents. The localization–delocalization transition is second order
in the absence of a force but is first order when a force is applied.

We first look at the case where the polymer is in one bulk phase and is then pulled
into the other. The force is monotone increasing in the temperature and fc(0, ε) = 1 − ε.
We can understand the behaviour close to T = 0 by a simple approximate argument as
follows. Consider a polymer with m monomers in the α-phase and n − m in the β-phase. If
we ignore the entropy of the polymer in the α-phase (because it is under tension), then the
entropy contribution is (n − m) log µ, where µ = 2 for the Dyck path model. The energy is
−mf − εm − (n − m) (since ε2 = 1). Hence the free energy is approximately given by

F = −mf − εm − (n − m) − T (n − m) log 2 (6.1)

and we differentiate with respect to m and set the derivative equal to zero, giving a critical
value of f

fc = 1 − ε + T log 2. (6.2)

If f > fc the free energy is minimized by setting m = n while if f < fc it is minimized
by setting m = 0, so fc is the critical force. At T = 0 we have fc(0, ε) = 1 − ε, and
(differentiating with respect to T ) we see that the fc(T , ε) has positive slope (equal to log 2)
at T = 0 for every ε ∈ [0, 1].

In the localized regime, close to T = 0 we expect the polymer to lie as close to the
interface as possible. The details are different for the two models related to Dyck and Motzkin
paths and we consider the Dyck path version. With ε < 1 the energy is minimized by having
half the vertices in α and half in the interface and we expect this to be the ground state. (This
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Figure 4. The temperature dependence of the critical force to pull a polymer from the interface
into a bulk phase. The pairs of curves are for the exact force (for the Dyck path model) and for that
derived from the approximate equation (6.5). The three sets of curves are for ε = 0.8, 0.9 and 1.0.

comes from the geometry of the walks.) Hence at temperature T with force f the free energy
in this approximation (i.e. at very low temperature) is given by

F = −mf + mε +
(n − m)

2
ε. (6.3)

Following the above procedure we find that fc(0, ε) = ε/2. When ε = 1 the ground state will
be degenerate since vertices not in the line x2 = 0 can be in x2 = ±1 and will have the same
energy in either of these two lines. Hence at T = 0 there will be a residual entropy when
ε = 1. For ε < 1 there will be a similar entropy contribution for T > 0 and this will be larger
as ε approaches 1. In this case there is an energy penalty for having vertices in the β phase.
When ε � 1 we can estimate the free energy at small values of T by writing

F = −mf + mε − T log
(n−m)/2∑

l=0

(
(n − m)/2

l

)
(e−1/T )l(e−ε/T )(n−m−2l)/2

= −mf + mε − T
(n − m)

2
log(e−1/T + e−ε/T )

= −mf + mε + ε
(n − m)

2
− T

(n − m)

2
log(1 + e−(1−ε)/T ). (6.4)

Differentiating with respect to m and setting the derivative equal to zero gives the following
expression for the critical value of the force:

fc = ε

2
+

T

2
log(1 + e−(1−ε)/T ). (6.5)

When T = 0 we have fc(0, ε) = ε/2. In addition, when ε < 1, ∂fc/∂T = 0 at T = 0.
When 1 � ε > 1/2 the behaviour at small T predicted by (6.5) is almost identical to that
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derived from (4.2) (see figure 4). When ε � 1/2 this strategy is no longer appropriate since
the energy penalty incurred by having vertices in the β phase is larger than that incurred by
having vertices leave the interface for the α phase.

The Motzkin path model differs in several ways. The walk can lie entirely in the interface
at T = 0 so the ground state is unique even at ε = 1. This means that the critical force has
zero slope at T = 0, even when ε = 1. In addition, fc(ε, T ) = ε for the Motzkin path model.

For models with a degenerate ground state we would expect the force to have non-zero
slope at T = 0.

In the physical situation when both solvents are poor the polymer could collapse (or
precipitate) and this is not considered in our model since neither Dyck paths nor Motzkin
paths exhibit a collapse transition. In principle this could be included by considering partially
directed walks which are known to have a collapse transition (Brak et al 1992).
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